Simultaneous Drawing of Planar Graphs with Right-Angle Crossings and Few Bends

نویسندگان

  • Michael A. Bekos
  • Thomas C. van Dijk
  • Philipp Kindermann
  • Alexander Wolff
چکیده

Given two planar graphs that are defined on the same set of vertices, a RAC simultaneous drawing is a drawing of the two graphs where each graph is drawn planar, no two edges overlap, and edges of one graph can cross edges of the other graph only at right angles. In the geometric version of the problem, vertices are drawn as points and edges as straight-line segments. It is known, however, that even pairs of very simple classes of planar graphs (such as wheels and matchings) do not always admit a geometric RAC simultaneous drawing. In order to enlarge the class of graphs that admit RAC simultaneous drawings, we allow edges to have bends. We prove that any pair of planar graphs admits a RAC simultaneous drawing with at most six bends per edge. For more restricted classes of planar graphs (e.g., matchings, paths, cycles, outerplanar graphs, and subhamiltonian graphs), we significantly reduce the required number of bends per edge. All our drawings use quadratic area.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous Embeddings with Few Bends and Crossings

A simultaneous embedding with fixed edges (SEFE) of two planar graphs R and B is a pair of plane drawings of R and B that coincide when restricted to the common vertices and edges of R and B. We show that whenever R and B admit a SEFE, they also admit a SEFE in which every edge is a polygonal curve with few bends and every pair of edges has few crossings. Specifically: (1) if R and B are trees ...

متن کامل

Drawing Graphs with Right Angle Crossings

Cognitive experiments show that humans can read graph drawings in which all edge crossings are at right angles equally well as they can read planar drawings; they also show that the readability of a drawing is heavily affected by the number of bends along the edges. A graph visualization whose edges can only cross perpendicularly is called a RAC (Right Angle Crossing) drawing. This paper initia...

متن کامل

Drawing Partially Embedded and Simultaneously Planar Graphs

We investigate the problem of constructing planar drawings with few bends for two related problems, the partially embedded graph problem—to extend a straight-line planar drawing of a subgraph to a planar drawing of the whole graph—and the simultaneous planarity problem—to find planar drawings of two graphs that coincide on shared vertices and edges. In both cases we show that if the required pl...

متن کامل

Simultaneous Embedding of Planar Graphs with Few Bends

We consider several variations of the simultaneous embedding problem for planar graphs. We begin with a simple proof that not all pairs of planar graphs have simultaneous geometric embedding. However, using bends, pairs of planar graphs can be simultaneously embedded on the O(n) × O(n) grid, with at most three bends per edge, where n is the number of vertices. The O(n) time algorithm guarantees...

متن کامل

On the Size of Graphs That Admit Polyline Drawings with Few Bends and Crossing Angles

We consider graphs that admit polyline drawings where all crossings occur at the same angle α ∈ (0, π 2 ]. We prove that every graph on n vertices that admits such a polyline drawing with at most two bends per edge has O(n) edges. This result remains true when each crossing occurs at an angle from a small set of angles. We also provide several extensions that might be of independent interest.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Graph Algorithms Appl.

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2015